1. [[Design Pattern I - Instrumental Variable (IV)]]
$\quad$ 1.1. **Understanding the problem and solution**
$\quad\quad$ 1.1.1. [[Confounding by intention]]
$\quad$ 1.2. **Solving the problem using the IV pattern**
$\quad\quad$ 1.2.1. [[Data and conceptual model]]
$\quad\quad$ 1.2.2. [[Statistical modeling of IV]]
$\quad\quad\quad$ 1.2.2.1. [[Replication of IV in Python]]
$\quad\quad$ 1.2.3. [[(Double) Machine learning using IV]]
$\quad\quad$ 1.2.4. [[IV the Bayesian way]]
$\quad\quad$ 1.2.5. [[Key takeaways]]
$\quad$ 1.3. **Oh my the IV!**
$\quad\quad$ 1.3.1. [[Oh my! Different standard errors everywhere]]
$\quad\quad$ 1.3.2. [[Oh my! Larger effect size in the IV model]]
$\quad\quad$ 1.3.3. [[Oh my! Within R-squared in the IV model]]
$\quad\quad$ 1.3.4. [[Oh my! Priors in the Bayesian IV model]]
$\quad$ 1.4. **Cases using the design pattern**
$\quad\quad$ 1.4.1. [[Causal impact of recommendations on Amazon]]
$\quad$ 1.5. **Where to from here**
$\quad\quad$ 1.5.1. [[Data centricity in the IV pattern]]
$\quad\quad$ 1.5.2. [[Using LLMs for IV discovery and data]]
2. Design Pattern II - Regression Discontinuity (RD)
$\quad$ 2.1. Understanding the problem and solution
$\quad$ 2.2. Solving the problem using the RD pattern
$\quad\quad$ 2.2.1. Data and conceptual model
$\quad\quad$ 2.2.2. Statistical modeling of RD
$\quad\quad$ 2.2.3. Machine learning using RD
$\quad\quad$ 2.2.4. RD the Bayesian way
3. Design Pattern III - Matching
$\quad$ 3.1. Understanding the problem and solution
$\quad$ 3.2. ...
4. To be continued...
> [!info]- Last updated: February 3, 2025